评论
收藏
点赞
奇速英语阅读:3D打印技术竟然可以“播种”人体细胞?
阅读量:23434 2019.07.25 作者: 奇速小牛
奇速英语阅读理解:今天和广大英语阅读爱好者分享的主题是3D打印技术竟然可以“播种”人体细胞?
3D printing makes it easier to create tissue for medical research
3D打印使得创造医学研究的细胞组织更加容易
Drugs can be tested this way,and whole organs may one day be grown
药物可以通过这种方法进行测试,终有一天整个器官都可以生长出来
CULTIVATING CELLS in a Petri dish is a time-honoured way of experimenting on biological tissues.But it is not particularly reliable.The problem is that cells often need specific structural support to function correctly.To provide this,tissue engineers are turning to 3D printers to make tiny bespoke scaffolds onto which cells are“seeded”.
在培养皿中培养细胞是在生物组织上进行实验的一种由来已久的方法,但它其实并不是特别的可靠。其主要的问题是,细胞通常需要特定的结构支持才能正常运作。为了实现这一目标,组织工程师们正求助于3D打印机来制造微小的定制支架,将细胞“播种”到支架上。
This encourages those cells to grow and develop.As research into tissue engineering advances,so too do ways of printing the scaffolds.As two recent examples show,this could lead to better drug treatments for diseases such as cancer,and even to complete artificial organs suitable for transplant.
从而这就可以刺激这些细胞的生长和发育。随着组织工程研究的进展,打印支架的方法也在进步。正如最近的两个例子所显示的,这可能可以使更好的药物能用于治疗疾病,比如癌症,甚至还可以完成移植适合的人工器官。
Glioblastoma is an aggressive cancer that begins in the brain,and rapidly evolves resistance to drugs.The best chance of treatment is to cultivate,in the laboratory,samples of an individual’s tumour and then bombard these with different combinations of drugs until an effective mixture is found.
胶质母细胞瘤是一种侵袭性癌症,其开始于大脑,并迅速演变为耐药性。目前最好的治疗方法是,在实验室里培养出个体肿瘤的样本,然后用不同的药物组合轰击这些样本,直到找到有效的混合物。
Two South Korean researchers,Cho Dong-Woo of Pohang University of Science and Technology and Sun Ha-Paek of Seoul National University Hospital,have come up with a way to print 3D structures out of glioblastoma cells.
韩国浦项科技大学的赵东宇和首尔国立大学医院的孙夏百两位研究人员提出了一种用胶质母细胞瘤细胞打印3D结构的方法。
These develop into mature cancers within two weeks and can,as the researchers reported recently in Nature Biomedical Engineering,be used to test novel drug cocktails—apparently with success,although existing regulations mean that such drug combinations cannot yet be given the ultimate test,in patients.
正如研究人员最近在《自然生物医学工程》杂志上指出的那样,这些药物在两周内就会发展成成熟的癌症细胞,并且可以被用于测试新型的药物试验——这显然是成功的,尽管现有的规定意味着这种药物组合还不能在病人身上进行最终的测试。
In the second example,Filippos Tourlomousis of the Massachusetts Institute of Technology,working with a team at the Stevens Institute of Technology,in New Jersey,produced a scaffold from polymer fibres a mere hundredth of a millimetre wide—far smaller than most 3D printers can manage.The team did this by drawing the fibres out using an electric field applied between the print nozzle and the surface onto which the fibres were being printed.
在第二个例子中,麻省理工学院的Filippos Tourlomousis与新泽西州史蒂文斯理工学院的一个团队合作,用只有百分之一毫米宽的聚合物纤维制作了一个支架,比大多数3D打印机所能处理的还要小得多。研究小组通过在打印喷嘴和打印纤维的表面之间施加电场将纤维拉出,从而成功进行制作。
As Dr Tourlomousis and his colleagues report in Microsystems and Nanoengineering,cells stuck well to this scaffold and grew in a uniform way—essential if the technique is to result,ultimately,in a transplantable organ.In particular,the researchers found that certain stem cells(cells which can be coaxed into differentiating into more specialised cells that carry out specific functions)survived on the scaffold for much longer.
正如Tourlomousis博士和他的同事在《微系统和纳米工程》中所报道的那样,细胞很好地粘附在这个支架上,并以一种统一的方式生长——如果这项技术最终要在可移植器官中实现,这是必不可少的。特别是,研究人员发现,某些干细胞(可以被诱导分化成具有特定功能的更特殊的细胞)在支架上存活的时间要比在培养皿中生长的时间长得多。
Without losing their properties,than would have been the case if they had been grown in a Petri dish.This discovery could help those trying to find ways of encouraging stem cells to generate tissue and organs for transplant.A bonus is that if the stem cells in question were taken from the patient to be treated,such transplants would be less likely to be rejected.
而且是在没有损失其本身特性的情况下。这一发现可以帮助那些试图寻找方法去刺激干细胞产生组织和器官移植的人。此外,一个额外的好处是,如果从病人身上提取有问题的干细胞进行治疗,这样再进行移植就不太可能被拒绝和失效。
比大多数3D打印机所能处理的还要小得多。研究小组通过在打印喷嘴和打印纤维的表面之间施加电场将纤维拉出,从而成功进行制作。更多奇速英语阅读资讯,请持续关注奇速英语官网:www.qisuabc.com